39 research outputs found

    A privacy-preserving fuzzy interest matching protocol for friends finding in social networks

    Get PDF
    Nowadays, it is very popular to make friends, share photographs, and exchange news throughout social networks. Social networks widely expand the area of people’s social connections and make communication much smoother than ever before. In a social network, there are many social groups established based on common interests among persons, such as learning group, family group, and reading group. People often describe their profiles when registering as a user in a social network. Then social networks can organize these users into groups of friends according to their profiles. However, an important issue must be considered, namely many users’ sensitive profiles could have been leaked out during this process. Therefore, it is reasonable to design a privacy-preserving friends-finding protocol in social network. Toward this goal, we design a fuzzy interest matching protocol based on private set intersection. Concretely, two candidate users can first organize their profiles into sets, then use Bloom filters to generate new data structures, and finally find the intersection sets to decide whether being friends or not in the social network. The protocol is shown to be secure in the malicious model and can be useful for practical purposes.Peer ReviewedPostprint (author's final draft

    Design of an Aircraft Rolling Bearings Platform and its Thermal Performance Evaluation

    Get PDF
    The thermal instability is one crucial factor leading to low bearing operation performance. This paper presents a novel experiment device for thermal performance investigation of an aircraft rolling bearings. A bidirectional fixing structure was designed to balance the spindle thermal deformation. The hydraulic loading was used and the oil injection manner was adopted in the new device. Experimental test was conducted using the new device and experimental results were compared with the calculation based on the temperature and thermal nodes theory. The comparison demonstrates that the temperature distribution trends between the theoretical and experimental results remained the same; specifically, the error between the theoretical and experimental results was 1.0 % under the condition of 200 kg load and 2250 rpm driving speed. Consequently, the analysis result shows that the new device is feasible and reliable to provide precise thermal characteristics for the aircraft rolling bearings

    From Transistors to Phototransistors by Tailoring the Polymer Stacking

    Get PDF
    It is universally acknowledged that highly photosensitive transistors are strongly dependent on the high carrier mobility of polymer-based semiconductors. However, the polymer π–π stacking and aggregation, required to increase the charge mobility, conversely inhibit the dissociation of photogenerated charge carriers, in turn accelerating the geminate recombination of electron-hole pairs. To explore the effects of charge mobility and polymer stacking on the photoresponsivity of the phototransistors, here, two alternating copolymers are synthesized, namely P-PPAB-IDT and P-PPAB-BDT, by palladium-catalyzed Stille coupling of PPAB with indaceodithiophene (IDT) or benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl) (BDT) monomers. The polymer P-PPAB-IDT demonstrates a nearly 20 times enhancement in the hole mobility compared to P-PPAB-BDT. Yet, P-PPAB-IDT surprisingly shows no response to white light illumination, whereas P-PPAB-BDT exhibits a significant photoresponse to the same light source with a high light-current/dark-current (Ilight/Idark) ratio of 21.6 in the p-type area and a low current ratio of just 5.2 in the n-type area. It is believed that this work will provide an effective strategy to develop highly photosensitive polymer semiconductors by reducing polymer stacking and aggregation rather than improving the charge carrier mobility.acceptedVersionPeer reviewe

    Early-start antiplatelet therapy after operation in patients with spontaneous intracerebral hemorrhage and high risk of ischemic events (E-start):Protocol for a multi-centered, prospective, open-label, blinded endpoint randomized controlled trial

    Get PDF
    BACKGROUND: For severe spontaneous intracerebral hemorrhage (sSICH) patients with high risk of ischemic events, the incidence of postoperative major cardiovascular/cerebrovascular and peripheral vascular events (MACCPE) is notable. Although antiplatelet therapy is a potential way to benefit these patients, the severe hemorrhagic complications, e.g., intracranial re-hemorrhage, is a barrier for early starting antiplatelet therapy. OBJECTIVES: This randomized controlled trial aims to identify the benefit and safety of early starting antiplatelet therapy after operation for sSICH patients with high risk of ischemic events. METHODS: This study is a multicenter, prospective, randomized, open-label, blinded-endpoint trial. We will enroll 250 sSICH patients with a high risk of ischemic events (including cerebral infarcts, transient ischemic attack, myocardial infarction, pulmonary embolism, and deep venous thrombosis). The participants will be randomized in a 1:1 manner to early-start group (start antiplatelet therapy at 3 days after operation) and normal-start group (start antiplatelet therapy at 30 days after operation). The early-start group will receive aspirin 100 mg daily. The control group will not receive antithrombotic therapy until 30 days after operation. The efficacy endpoint is the incidence of MACCPE, and the safety endpoint is the incidence of intracranial re-hemorrhage. DISCUSSION: The Early-Start antiplatelet therapy after operation in patients with spontaneous intracerebral hemorrhage trial (E-start) is the first randomized trial about early start antiplatelet therapy for operated sSICH patients with a high risk of ischemic events. This study will provide a new strategy and evidence for postoperative management in the future. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, identifier NCT04820972; Available at: https://clinicaltrials.gov/ct2/show/NCT04820972?term=NCT04820972&draw=2&rank=1. Chinese Clinical Trial Registry, identifier ChiCTR2100044560; Available at: http://www.chictr.org.cn/showproj.aspx?proj=123277

    A New Type of Countermeasure against DPA in Multi-Sbox of Block Cipher

    No full text
    The Internet of Things (IoT) provides the network for physical devices, like home appliances, embedded with electronics, sensors, and software, to share and exchange data. With its fast development, security of IoT has become a crucial problem. Among the methods of attack, side-channel attack has proven to be an effective tool to compromise the security of different devices with improving techniques of data processing, like DPA and CPA. Meanwhile, many countermeasures have risen accordingly as well, such as masking and noise addition. However, their common deficiency was that every single countermeasure might not be able to protect the key information completely after statistical analysis. Sensitive information will be disclosed during differential power analysis of Sbox, since it is the only nonlinear component in block cipher. Thus, how to protect Sbox effectively was the highlight of researches. Based on Sbox-reuse concept proposed by Bilgin, this paper put forward a new type of a countermeasure scheme against DPA in multi-Sbox of block cipher. We first converted the multi-Sbox into 4 × 4 permutations and then reused permutation with the algebraic degree of more than one so as to turn it into a special reusable Sbox and then numbered 4 × 4 permutation input. Finally, we made these inputs of permutations completely random by masking. Since it was necessary to make the collected power consumption curve subject to alignment process in DPA by chosen-plaintext attack, this scheme combined the concept from DPA countermeasures of masking and noise addition. After the experiment with the proposed implementation, successful prevention of the attacker from accurately aligning the power consumption curve of the target Sbox has been proven, and the level of security has been improved by adding more random noise to protect key information and decrease the accuracy of statistical analysis

    The Role of Connexin Hemichannels in Inflammatory Diseases

    No full text
    The connexin protein family consists of approximately 20 members, and is well recognized as the structural unit of the gap junction channels that perforate the plasma membranes of coupled cells and, thereby, mediate intercellular communication. Gap junctions are assembled by two preexisting hemichannels on the membranes of apposing cells. Non-junctional connexin hemichannels (CxHC) provide a conduit between the cell interior and the extracellular milieu, and are believed to be in a protectively closed state under physiological conditions. The development and characterization of the peptide mimetics of the amino acid sequences of connexins have resulted in the development of a panel of blockers with a higher selectivity for CxHC, which have become important tools for defining the role of CxHC in various biological processes. It is increasingly clear that CxHC can be induced to open by pathogen-associated molecular patterns. The opening of CxHC facilitates the release of damage-associated molecular patterns, a class of endogenous molecules that are critical for the pathogenesis of inflammatory diseases. The blockade of CxHC leads to attenuated inflammation, reduced tissue injury and improved organ function in human and animal models of about thirty inflammatory diseases and disorders. These findings demonstrate that CxHC may contribute to the intensification of inflammation, and serve as a common target in the treatments of various inflammatory diseases. In this review, we provide an update on the progress in the understanding of CxHC, with a focus on the role of these channels in inflammatory diseases

    Incorporating the Soil Gas Gradient Method and Functional Genes to Assess the Natural Source Zone Depletion at a Petroleum-Hydrocarbon-Contaminated Site of a Purification Plant in Northwest China

    No full text
    An increasing number of studies have demonstrated that natural source zone depletion (NSZD) in the vadose zone accounts for the majority (90%~99%) of the natural attenuation of light non-aqueous phase liquid (LNAPL). Until now, 0.05 to 12 kg/a.m2 NSZD rates at tens of petroleum LNAPL source zones have been determined in the middle or late evolution stage of LNAPL release, in which limited volatile organic compounds (VOCs) and methane (CH4) were detected. NSZD rates are normally estimated by the gradient method, yet the associated functional microbial activity remains poorly investigated. Herein, the NSZD at an LNAPL-releasing site was studied using both soil gas gradient methods quantifying the O2, CO2, CH4, and VOCs concentrations and molecular biology methods quantifying the abundance of the pmoA and mcrA genes. The results showed that the methanogenesis rates were around 4 to 40 kg/a.m2. The values were greater than the rates calculated by the sum of CH4 escaping (0.3~1.2 kg/a.m2) and O2 consuming (3~13 kg/a.m2) or CO2 generating rates (2~4 kg/a.m2), suggesting that the generated CH4 was oxidized but not thoroughly to CO2. The functional gene quantification also supported the indication of this process. Therefore, the NSZD rates at the site roughly equaled the methanogenesis rates (4~40 kg/a.m2), which were greater than most of the previously studied sites with a 90th percentile value of 4 kg/a.m2. The study extended the current knowledge of the NSZD and has significant implications for LNAPL remediation management
    corecore